Tuesday, June 21, 2022

Total Boolean Logic Functions of Two Input System


In this blog post we will be get to know about how many total Boolean logic functions are possible with a single / two input digital system.

Let's start with a single input system as below -

 - The total Boolean functions which can be obtained from Single Input System are as below  - 

        Boolean Function

Name of the Boolean Function

              Meaning

                     0

                         Null

              Always 0

                     1

                     Identity

              Always 1

                     A

                    Transfer

       Pass Value of A

                Bar{A}

                       NOT

Pass Negated Value of A

                                                    Table #1: Single Input System Boolean Functions

-Hence, total Boolean functions which can be obtained from a Single Input System are 4

- In General : Total Boolean Functions Obtained from an 'N' Input System are 2^{2^{N}}

Now, Let's see what all Boolean Functions can be obtained from a 2 Input System as below-


-Table below captures all the 16 Boolean functions possible for a 2 Input System.


        Boolean Function

Name of the Boolean Function

              Meaning

                     0

                         Null

              Always 0

                     1

                     Identity

              Always 1

                     A

                    Transfer

       Pass Value of A

                    B

                    Transfer

       Pass Value of B

                Bar{A}

                       NOT

Pass Negated Value of A

                Bar{B}

                       NOT

Pass Negated Value of B

                 A*B

                      AND

1 Only if A and B both are 1

              Bar{A*B}

                     NAND

0 Only if A and B both are 1

                 A+B

                        OR

0 Only if A and B both are 0

              Bar{A+B}

                       NOR

1 Only if A and B both are 0

             A + Bar{B}

 

                Implication

If B, then A

             Bar{A} + B

                Implication

If A, Then B

             A*Bar{B}]

                 Inhibition

A but not B

              Bar{A}*B

                 Inhibition

B but not A

               A      B

                   EX-OR

A or B, but not both

          Bar{A      B}

                  EX-NOR

1 if A equals to B

                                       Table #2 : 2 Input System Boolean Functions 

Implication Function : In implication logic, the output will either be driven to a high or would replicate the state of one of the inputs, depending on the value of the other input.

                                              Inputs

 

                     Output

                            A

                             B

                              Y

                            0

                             0

                              1

                            0

                             1

                              1

                            1

                             0

                              0

                            1

                             1

                              1

                              Table #3: Implication – A implies B [Bar{A} + B]

Inhibition Function : The inhibition function is the complementary version of implication.

                                              Inputs

 

                     Output

                            A

                             B

                              Y

                            0

                             0

                              0

                            0

                             1

                              0

                            1

                             0

                              1

                            1

                             1

                              0

                                     Table #4: Inhibition – A inhibits B [A * Bar{B}]

 

Thank !

 

 

0 Comments:

Post a Comment